BIG DATA, MACHINE LEARNING Y DATA SCIENCE EN PYTHON

BIG DATA, MACHINE LEARNING Y DATA SCIENCE EN PYTHON

ORTEGA CANDEL, JOSÉ MANUEL

32,90 €
IVA incluido
Disponible en la librería
Editorial:
RA-MA
Año de edición:
2022
Materia
Informática
ISBN:
978-84-19444-58-5
Páginas:
408
Encuadernación:
Rústica
Colección:
SIN COLECCION
32,90 €
IVA incluido
Disponible en la librería

CAPÍTULO 1. INTRODUCCIÓN A BIG DATA 1.1 INTRODUCCIÓN 1.2 DEFINICIÓN DE BIG DATA 1.3 TIPOS DE DATOS 1.4 CARACTERÍSTICAS DE BIG DATA 1.5 DESAFÍOS DE BIG DATA 1.6 TECNOLOGÍAS PARA BIG DATA 1.7 PERFILES BIG DATA 1.7.1 DIRECCIÓN DE DATOS(CHIEF DATA OFFICER-CDO) 1.7.2 CIENTÍFICO DE DATOS(SCIENTIST) 1.7.3 ANALISTA DE DATOS(DATA ANALYST) 1.7.4 INGENIERIO DE DATOS(DATA ENGINEER) 1.7.5 ARQUITECTO DE DATOS(DATA ARCHITECT) 1.7.6 GESTOR DE DATOS(DATA MANAGER) 1.7.7 CIUDADANO CIENTÍFICO DE DATOS(CITIZEN DATA SCIENTIST) 1.7.8 ADMINISTRADOR DE DATOS( DATA STEWARD) 1.7.9 TABLA COMPARATIVA 1.8 BIG DATA ANALYTICS CAPÍTULO 2. ARQUITECTURAS BIG DATA 2.1 INTRODUCCIÓN 2.2 ACTORES PRINCIPALES EN UNA ARQUITECTURA BIG DATA 2.2.1 SISTEMA DE ORQUESTACIÓN 2.2.2 PROVEEDOR DE DATOS 2.2.3 PROVEEDOR DE APLICACIONES BIG DATA 2.2.4 PROVEEDOR DE INFRAESTRUCTURA BIG DATA 2.2.5 CONSUMIDOR DE DATOS 2.2.6 CAPA DE SEGURIDAD Y PRIVACIDAD 2.2.7 CAPA DE GESTIÓN. 2.3 TIPOS DE ARQUITECTURAS 2.3.1 PROCESAMIENTO BATCH 2.3.2 PROCESAMIENTO STREAMING 2.3.3 PROCESAMIENTO MAPREDUCE 2.4 ARQUITECTURA LAMBDA. 2.5 ARQUITECTURA KAPPA 2.6 APACHE KAFKA 2.7 ARQUITECTURA POR CAPAS 2.8 CASOS DE USO DE ARQUITECTURAS BIG DATA 2.8.1 AUTOMÓVILES EN UN MUNDO DE STREAMING 2.8.2 CONSTRUYENDO UN SISTEMA DE LINAJE DE DATOS 2.8.3 WOLFRAM LANGUAGE 2.9 BIG DATA LANDSCAPE 2.10 HERRAMIENTA PARA EL ANÁLISIS DE DATOS MASIVOS 2.11 CONCLUSIONES CAPÍTULO 3. BASES DE DATOS PARA BIG DATA 3.1 INTRODUCCIÓN 3.2 COMPARACIÓN SQL VS NOSQL 3.3 BASES DE DATOS NOSQL 3.4 VENTAJAS DE LAS BASES DE DATOS NOSQL 3.5 TIPOS DE BASES DE DATOS NOSQL 3.6 IMPLANTANDO NOSQL 3.7 BASES DE DATOS DOCUMENTALES 3.7.1 CASOS DE USO BASES DE DATOS DOCUMENTALES 3.7.2 MONGODB 3.7.3 INDEXACIÓN EN MONGODB 3.7.4 REPLICACIÓN EN MONGODB 3.7.5 USO DE MONGODB DESDE PYTHON 3.7.6 COUCHDB 3.7.7 ARQUITECTURA DE COUCHDB 3.8 BASES DE DATOS ORIENTADAS A COLUMNAS 3.8.1 APACHE CASSANDRA 3.8.2 CONSISTENCIA EN APACHE CASSANDRA 3.8.3 CASOS DE USO 3.9 BASES DE DATOS CLAVE-VALOR(KEY-VALUE) 3.9.1 REDIS 3.10 BASES DE DATOS ORIENTADAS A GRAFOS 3.10.1 CASOS DE USO BASES DATOS DE GRAFOS 3.10.2 NEO4J 3.11 TEOREMA CAP 3.12 CONCLUSIONES NOSQL CAPÍTULO 4. INTRODUCCIÓN A LA CIENCIA DE DATOS Y MACHINE LEARNING 4.1 DEFINICIÓN DE CIENCIA DE DATOS 4.2 DEFINICIONES DE APRENDIZAJE Y MACHINE LEARNING 4.3 SISTEMAS EXPERTOS 4.4 MINERÍA DE DATOS ( DATA MINING) 4.4.1 INTEGRACIÓN Y RECOPILACIÓN DE INFORMACIÓN 4.4.2 SELECCIÓN, LIMPIEZA Y TRANSFORMACIÓN DE DATOS 4.4.3 TÉCNICAS DE MINERÍA DE DATOS 4.5 INTRODUCCIÓN AL APRENDIZAJE AUTOMÁTICO 4.6 TIPOS DE APRENDIZAJE AUTOMÁTICO. 4.7 APRENDIZAJE SUPERVISADO VS NO SUPERVISADO 4.7.1 APRENDIZAJE SUPERVISADO:CLASIFICACIÓN Y REGRESIÓN 4.7.2 ÁRBOLES DE DECISIÓN 4.7.3 ALGORITMO K-NEAREST NEIGHBOR 4.7.4 APRENDIZAJE NO SUPERVISADO 4.8 TÉCNICAS DE MACHINE LEARNING 4.9 PROBLEMA DEL SOBREENTRENAMIENTO 4.9.1 CÓMO EVITAR EL SOBREENTRENAMIENTO 4.10 FASES PARA ABORDAR UN PROBLEMA DE ML 4.10.1 PASOS PARA CONSTRUIR UN MODELO DE ML 4.10.2 EVALUACIÓN DE MODELOS CAPÍTULO 5. TRATAMIENTO DE DATOS CON PYTHON 5.1 JUPYTER NOTEBOOK 5.2 MERCURY 5.3 NUMPY 5.4 SCIPY 5.5 PANDAS 5.5.1 ESTRUCTURAS DE DATOS EN PANDAS 5.5.2 SERIES 5.5.3 DATAFRAMES 5.5.4 LECTURA DE UN FICHERO CSV CON PANDAS 5.5.5 ALTERNATIVAS A PANDAS. 5.6 LECTURA DE UN FICHERO JSON 5.7 LECTURA Y ESCRITURA EN FORMATO PICKLE CAPÍTULO 6. SCIKIT-LEARN COMO LIBRERÍA DE MACHINE LEARNING 6.1 INTRODUCCIÓN A SCIKIT-LEARN 6.2 DATASETS EN SCIKIT-LEARN 6.3 CARGANDO CONJUNTOS DE DATOS EN SCIKIT-LEARN. 6.3.1 CONJUNTOS DE DATOS GENERADOS DE FORMA ALEATORIA 6.4 DIVIDIR DATOS DE ENTRENAMIENTO Y TEST. 6.5 APRENDIZAJE AUTOMÁTICO CON SCIKIT-LEARN. 6.5.1 ESTABLECER UNA METODOLOGÍA DE EVALUACIÓN 6.6 REGRESIÓN LINEAL 6.6.1 IMPLEMENTACIÓN DE REGRESIÓN LINEAL 6.6.2 PREDECIR EL VALOR DEL ALQUILER DE LAS VIVIENDAS 6.7 ALGORITMO DE REGRESIÓN LOGÍSTICA 6.7.1 VALIDACIÓN CRUZADA EN SCIKIT-LEARN 6.7.2 OBTENER LA MATRIZ DE CONFUSIÓN 6.8 INTRODUCCIÓN A LOS ÁRBOLES DE DECISIÓN 6.8.1 ALGORITMO DE ÁRBOLES DE DECISIÇON EN SCIKIT-LEARN 6.9 SVM COMO ALGORITMO DE MÁQUINAS DE VECTORES DE SOPORTE 6.9.1 ALGORITMO DE SUPPORT VECTOR MACHINE EN SCIKIT-LEARN 6.9.2 OPTIMIZANDO PARÁMETROS CON GRIDSEARCHCV 6.10 KNN COMO ALGORITMO DE CLASIFICACIÓN SUPERVISADA 6.10.1 IMPLEMENTACIÓN DE KNEIGHBORSCLASSIFIER 6.10.2 RADIUSNEIGHBORSCLASSIFIER 6.11 CLUSTERING Y APRENDIZAJE NO SUPERVISADO 6.12 EXTRACCIÓN DE CARACTERÍSTICAS CAPÍTULO 7. REDES NEURONALES ARTIFICIALES 7.1 INTRODUCCIÓN 7.2 PERCEPTRÓN SIMPLE 7.3 PERCEPTRÓN MULTICAPA 7.4 RED NEURONAL RECURRENTE 7.5 RED NEURONAL CONVOLUCIONAL(CNN) 7.6 REDES NEURONALES CON TENSOR FLOW 7.6.1 ALGORITMO DE BACKPROPAGATION 7.6.2 PLAYGROUND TENSOR FLOW 7.6.3 INTRODUCCIÓN A TENSOR FLOW 7.6.4 FUNCIONAMIENTO DE TENSOR FLOW 7.7 USO DE LA LIBRERÍA KERAS EN DEEP LEARNING 7.8 USO DE GOOGLE COLAB. 7.9 REDES NEURONALES CON SKLEARN 7.10 TABLA COMPARATIVA CAPÍTULO 8. PLATAFORMA HADOOP 8.1 INTRODUCCIÓN 8.2 HERRAMIENTAS 8.3 SERVICIOS Y HERRAMIENTAS DEL ECOSISTEMA HADOOP 8.4 HADOOP DISTRIBUTED FILE SYSTEM (HDFS) 8.5 HADOOP MAPREDUCE 8.6 INTRODUCCIÓN A MAPREDUCE 8.7 DISTRIBUCIONES HADOOP 8.7.1 CLOUDERA 8.8 CONCLUSIONES CAPÍTULO 9. PROCESAMIENTO DISTRIBUÍDO CON APACHE SPARK 9.1 INTRODUCCIÓN 9.2 INTRODUCCIÓN AL PROCESAMIENTO DISTRIBUÍDO 9.3 INTRODUCCIÓN A APACHE SPARK 9.4 ECOSISTEMA DE APACHE SPARK 9.5 VENTAJAS DE APACHE SPARK 9.6 ARQUITECTURA DE APACHE SPARK 9.7 RDD (RESILIENT DISTRIBUTED DATASETS) 9.8 SPARK CON SCALA 9.9 SPARK PARA CIENTÍFICO DE DATOS CAPÍTULO 10. PYSPARK COMO LIBRERÍA DE PROCESAMIENTO DISTRIBUÍDO 10.1 INSTALACIÓN DE APACHE SPARK 10.2 INTRODUCCIÓN A DOCKER 10.3 INSTALAR Y EJECUTAR PYSPARK CON DOCKER 10.4 API DE SPARK EN PYTHON 10.5 INTRODUCCIÓN A PYSPARK 10.6 MAPREDUCE A PYSPARK 10.7 TRABAJANDO CON SPARK SQL Y DATAFRAMES 10.8 SPARK STREAMING CAPÍTULO 11. ENTORNOS DE EJECUCIÓN SPARK 11.1 INTRODUCCIÓN 11.2 FINDSPARK 11.3 DATABRICKS:INTRODUCCIÓN A SPARK EN LA NUBE 11.4 APACHE ZEPPELIN CAPÍTULO 12. MLLIB COMO MÓDULO DE MACHINE LEARNING 12.1 INTRODUCCIÓN. 12.2 REGRESIÓN LINEAL CON PYSPARK 12.3 CLUSTERING CON PYSPARK 12.4 CLASIFICACIÓN MENSAJES SPAM CON PYSPARK CAPÍTULO 13. SISTEMAS DE RECOMENDACIÓN 13.1 INTRODUCCIÓN. 13.2 TIPOS DE SISTEMAS DE RECOMENDACIÓN 13.4 FILTRADO COLABORATIVO MATERIAL ADICIONAL

El libro está dirigido aquellos lectores que estén trabajando en proyecto relacionados con big data y busquen identificar las características de una solución de Big Data, los datos asociados a estas soluciones, la infraestructura requerida, y las técnicas de procesamiento de esos datos. Entre los principales objetivos podemos destacar: Introducir los conceptos de ciencias de datos y machine learning. Introducir las principales librerías que podemos encontrar en Python para aplicar técnicas de machine learning a los datos. Dar a conocer los pasos para construir un modelo de machine learning, desde la adquisición de datos, pasando por la generación de funciones, hasta la selección de modelos. Dar a conocer los principales algoritmos para resolver problemas de machine learning.

Artículos relacionados

  • EL IMPERIO DE LA IA
    HAO, KAREN
    Con un acceso privilegiado a las personas más cercanas a Sam Altman, líder de OpenAI, Karen Hao descubre como esta organización se ha convertido en el epicentro de una industria tecnológica con poder y recursos sin precedentes. Así, narra su frenética culminación en el sector y expone las enormes tensiones éticas, sociales y medioambientales que esta nueva era está generando. ...
    Disponible en la librería

    23,90 €

  • START! HISTORIA ILUSTRADA DE LOS VIDEOJUEGOS
    CARIO, ERWAN
    Pac-Man, Mario, Tomb Raider, Fortnite, GTA, Minecraft... Los videojuegos se han convertido en un pilar de la cultura popular. Este libro explora su historia, desde sus orígenes hasta la actualidad (1958-2023), a través de imágenes de los juegos y de los personajes más destacados. Con un enfoque claro y fácil de entender, Start! ofrece un análisis exhaustivo de los videojuegos, ...
    Disponible en la librería

    32,00 €

  • PHOTOSHOP + IA. LA EDICIÓN DEL FUTURO
    DELGADO, JOSE MARIA
    Photoshop es, sin lugar a duda, la herramienta más completa para la edición de imágenes, el retoque fotográfico y el diseño digital. Sus posibilidades son innumerables y abarcan un amplio espectro de aplicaciones: desde proyectos para Internet y desarrollos móviles hasta edición digital y retoque fotográfico. Se ha convertido en un recurso imprescindible para usuarios principia...
    Disponible en la librería

    35,95 €

  • INTELIGENCIA ARTIFICIAL
    Este libro es una obra didáctica que aborda los aspectos relacionados con el desarrollo de soluciones de inteligencia artificial, ya sea como apoyo al aprendizaje personal de quienes están interesados en este campo, o como guía de estudio en cursos formativos de IA.El texto está organizado en varios capítulos que, como indica su título, cubren todos los temas relevantes: desde ...
    Disponible en la librería

    29,95 €

  • HACIA EL FUTURO DE LOS HOSPITALES
    SERRANO, JORDI
    ¿Cómo se transformarán los hospitales para responder a los retos de la sociedad del mañana ¿Qué innovaciones cambiarán la manera en que pacientes y profesionales viven la experiencia hospitalaria ¿Podrán los sistemas de salud adaptarse a la presión creciente de la demanda y a la escasez de recursos ¿De qué forma la tecnología, la arquitectura y la ciencia del comportamiento red...
    Disponible en la librería

    23,95 €

  • CURSO DE LENGUAJE DAX
    BISBE YORK, ANA MARÍA
    El tratamiento de datos es una de las actividades más importantes en empresas y organizaciones. Vivimos en la era de los datos. Ante esta necesidad, Microsoft creó los modelos tabulares que se almacenan en bases de datos y se consumen en informes creados con Excel y Power BI a través de un lenguaje de expresiones que se llama DAX.El libro que te presento comienza tratando las c...
    Disponible en la librería

    29,95 €

Otros libros del autor

  • INTELIGENCIA ARTIFICIAL. INVESTIGACIONES, APLICACIONES Y AVANCES
    ORTEGA CANDEL, JOSÉ MANUEL
    El campo de la inteligencia artificial (IA) ha experimentado un crecimiento explosivo en las últimas décadas, transformando a fondo numerosos aspectos de nuestra sociedad y tecnología. Desde los sistemas de recomendación en plataformas de entretenimiento hasta los vehículos autónomos y la medicina asistida por IA, los avances en este campo han revolucionado la forma en que inte...
    Disponible en la librería

    24,95 €

  • INGENIERIA DE DATOS. DISEÑO, IMPLEMENTACION Y OPTIMIZACION DE FLUJOS DE DATOS EN
    ORTEGA CANDEL, JOSE MANUEL
    Este libro es una guía esencial para quienes desean dominar los conceptos y técnicas de ingeniería de datos. A través de un enfoque teóricopráctico, se exploran los métodos para la ingesta, almacenamiento y procesamiento eficiente de datos, con énfasis en el uso de Python y otras tecnologías clave. Los lectores aprenderán sobre la importancia de los datos en las organizaciones,...
    Disponible en la librería

    29,90 €

  • OSINT AUDITORÍAS DE SEGURIDAD Y CIBERAMENAZAS. EXPLORANDO LA INTELIGENCIA DE FUE
    ORTEGA CANDEL, JOSÉ MANUEL
    Disponible en la librería

    34,90 €

  • CIBERSEGURIDAD
    ORTEGA CANDEL, JOSÉ MANUEL
    La ciberseguridad es uno de los desafíos;más importantes de la era digital;pues se trata de un punto crítico;en cualquier entorno tecnológico.;Debido a que los entornos son cada vez más dinámicos y cambiantes, es necesario estar actualizado ante nuevas amenazas y vulnerabilidades que aparecen cada día. Por ello, las organizaciones han empezado a destinar una parte de su presupu...
    Disponible 24/48 horas

    29,95 €

  • HACKING ÉTICO CON HERRAMIENTAS PYTHON
    ORTEGA CANDEL, JOSÉ MANUEL
    "En los últimos años, Python se ha convertido en un lenguaje muy adoptado por la industria de la seguridad informática, debido a su simpleza, practicidad, además de ser un lenguaje tanto interpretado como de scripting. Su integración con multitud de libr ...
    Disponible 24/48 horas

    25,90 €

  • SEGURIDAD EN APLICACIONES WEB JAVA
    ORTEGA CANDEL, JOSÉ MANUEL
    Java es uno de los lenguajes de programación más utilizados a nivel empresarial a la hora de desarrollar aplicaciones de gestión con buenos niveles de escalabilidad y disponibilidad. Además de tener sólidos conocimientos en programación orientada a objet ...
    Consultar disponibilidad

    29,90 €