ALSINA I CATALÀ, CLAUDI / NELSEN , ROGER B.
Prólogo....................................................................11
Introducción........................................................... 15
Capítulo 1. Un jardín de enteros.................................................................... 21
1.1. Números figurados.................................................................21
1.2. Sumas de cuadrados, cubos y números triangulares............................................................ 26
1.3. Hay infinitos primos.................................................................... 29
1.4. Números de Fibonacci................................................................ 32
1.5. El teorema de Fermat.................................................................... 35
1.6. El teorema de Wilson.................................................................... 35
1.7. Números perfectos................................................................. 36
1.8. Desafíos................................................................. 37
Capítulo 2. Números ilustres.................................................................... 39
2.1. La irracionalidad de 2............................................................................. 40
2.2. La irracionalidad de k cuando k no es un cuadrado perfecto.................................................. 41
2.3. La razón áurea...................................................................... 42
2.4. La circunferencia y #............................................................................. 45
2.5. La irracionalidad de #............................................................................. 47
2.6. El conde de Buffon y su aguja...................................................................... 48
2.7. El número e como límite..................................................................... 49
2.8. Una serie infinita para e............................................................................ 52
2.9. La irracionalidad de e............................................................................ 52
2.10. El problema de Steiner sobre el número e............................................................................ 53
2.11. La constante de Euler-Mascheroni........................................................... 53
2.12. Exponentes racionales e irracionales........................................................... 55
2.13. Desafíos................................................................ 56
Capítulo 3. Puntos en el plano..................................................................... 59
3.1. La fórmula de Pick....................................................................... 59
3.2. Circunferencias y sumas de dos cuadrados.............................................................. 61
3.3. El teorema de Sylvester-Gallai.................................................................... 63
3.4. Partiendo en dos un conjunto de cien mil puntos................................................................... 64
3.5. Palomas y palomares............................................................. 65
3.6. Asignando números a los puntos del plano..................................................................... 66
3.7. Desafíos......................................................... 68
Capítulo 4. El patio de recreo de los polígonos.............................................................. 69
4.1. Combinatoria poligonal............................................................... 69
4. 2. Dibujar un polígono conocidas las longitudes de sus lados................................................................ 72
4.3. Los teoremas de Maekawa y Kawasaki............................................................... 73
4.4. Cuadratura de polígonos............................................................... 75
4.5. Las estrellas del patio de los polígonos............................................................... 76
4.6. Los vigilantes de la galería de arte......................................................................... 78
4.7. Triangulaciones de polígonos convexos................................................................ 80
4.8. Cicloides, ciclógonos y cicloides poligonales............................................................. 83
4.9. Desafíos.................................................................. 85
Capítulo 5. Un tesoro de teoremas sobre triángulos................................................................ 87
5.1. El teorema de Pitágoras................................................................. 87
5.2. Parentescos pitagóricos.............................................................. 88
5.3. El radio de la circunferencia inscrita en un triángulo rectángulo ............................................... 91
5.4. La generalización de Pappus del teorema de Pitágoras................................................................. 92
5.5. La circunferencia inscrita y la fórmula de Herón...................................................................... 93
5.6. La circunferencia circunscrita y la desigualdad triangular de Euler ................................................. 95
5.7. El triángulo órtico...................................................................... 96
5.8. La desigualdad de Erdo#s-Mordell................................................................... 97
5.9. El teorema de Steiner-Lehmus................................................................... 99
5.10. Las medianas de un triángulo............................................................... 100
5.11. ¿Son obtusángulos la mayoría de los triángulos?............................................................ 102
5.12. Desafíos................................................................ 103
Capítulo 6. El embrujo del triángulo equilátero.............................................................. 105
6.1. Teoremas de estilo pitagórico.............................................................. 105
6.2. El punto de Fermat de un triángulo............................................................... 108
6.3. El teorema de Viviani.................................................................. 109
6.4. Una teselación triangular del plano y la desigualdad de Weitzenböck................................ 110
6.5. El teorema de Napoleón.............................................................. 112
6.6. El milagro de Morley.................................................................. 113
6.7. El teorema de Van Schooten............................................................... 115
6.8. El triángulo equilátero y la razón áurea..................................................................... 116
6.9. Desafíos......................................................... 117
Capítulo 7. El rincón de los cuadriláteros......................................................... 119
7.1. Puntos medios en cuadriláteros......................................................... 119
7. 2. Cuadriláteros cíclicos................................................................. 121
7.3. Igualdades y desigualdades en un cuadrilátero.......................................................... 123
7.4. Cuadriláteros tangenciales y bicéntricos............................................................ 126
7.5. Los teoremas de Anne y Newton................................................................. 127
7.6. Pitágoras con un paralelogramo y triángulos equiláteros ........................................................... 129
7.7. Desafíos........................................................ 130
Capítulo 8. Cuadrados por todas partes.................................................................... 133
8.1. Teoremas con un cuadrado............................................................... 133
8.2. Teoremas con dos cuadrados.............................................................. 135
8.3. Teoremas con tres cuadrados.............................................................. 140
8.4. Con cuatro y más cuadrados.............................................................. 142
8.5. Cuadrados y matemáticas recreativas............................................................ 144
8.6. Desafíos......................................................... 146
Capítulo 9. Curvas a la vista ............................................................................. 149 Cuadraturas de lúnulas ............................................................................. 149
9.2. La asombrosa espiral de Arquímedes ............................................................................ 155
9.3. La cuadratriz de Hipias................................................................. 157
9.4. El cuchillo de zapatero y la bodega de sal....................................................................... 158
9.5. Las cónicas según Quetelet y Dandelin ............................................................................ 160
9.6. Triángulos de Arquímedes.........................................................161
9.7. Hélices............................................................... 164
9.8. Desafíos.............................................................. 165
Capítulo 10. Aventuras con embaldosados y coloreados........................................................... 169
10.1. Embaldosados y teselaciones del plano................................................................... 170
10.2. Embaldosados con triángulos y cuadriláteros....................................................... 174
10.3. Infinitas demostraciones del teorema de Pitágoras............................................................. 177
10.4. La rana saltarina............................................................... 179
10.5. Los siete frisos.................................................................... 181
10.6. Demostraciones coloridas ....................................................................................... 184
10.7. El dodecaedro y los caminos hamiltonianos.......................................................... 192
10.8. Desafíos..................................................................................................................... 194
Capítulo 11. Geometría en tres dimensiones...................................................... 197
11.1. El teorema de Pitágoras en tres dimensiones....................................................... 198
11.2. Particiones del espacio con planos........................................................................ 199
11.3. Triángulos correspondientes en tres rectas.......................................................... 201
11.4. Un cono que triseca ángulos ................................................................................. 201
11.5. La intersección de tres superficies esféricas......................................................... 202
11.6. La cuarta circunferencia......................................................................................... 204
11.7. El área del triángulo esférico................................................................................. 205
11.8. La fórmula de Euler para poliedros....................................................................... 206
11.9. Caras y vértices de poliedros convexos................................................................. 207
11.10. ¿Por qué se repiten las formas de algunas caras de los poliedros?..................... 209
11.11. Euler y Descartes à la Pólya................................................................................... 210
11.12. Cuadriculando cuadrados y cubiculando cubos................................................... 211
11.13. Desafíos................................................................................................................... 213
Capítulo 12. El patio de recreo de los polígonos................................................ 215
12.1. Conjuntos numerables y no numerables.............................................................. 215
12.2. El teorema de Cantor-Schröder-Bernstein............................................................ 217
12.3. La desigualdad de Cauchy-Schwarz...................................................................... 218
12.4. La desigualdad entre la media aritmética y la media geométrica....................... 220
12.5. Dos perlas del origami............................................................................................ 221
12.6. ¿Cómo dibujar una línea recta?.............................................................................. 223
12.7. Algunas joyas de las ecuaciones funcionales....................................................... 225
12.8. Desigualdades funcionales.................................................................................... 230
12.9. La serie de Euler para #2/6..................................................................................... 233
12.10. El producto de Wallis.............................................................................................. 235
12.11. La aproximación de Stirling para n!...................................................................... 236
12.12. Desafíos................................................................................................................... 238
Soluciones a los desafíos........................................................................................... 241
Capítulo 1........................................................................................................................... 241
Capítulo 2........................................................................................................................... 243
Capítulo 3........................................................................................................................... 247
Capítulo 4........................................................................................................................... 249
Capítulo 5........................................................................................................................... 251
Capítulo 6........................................................................................................................... 255
Capítulo 7........................................................................................................................... 258
Capítulo 8........................................................................................................................... 261
Capítulo 9........................................................................................................................... 262
Capítulo 10......................................................................................................................... 265
Capítulo 11.......................................................................................................................... 269
Capítulo 12......................................................................................................................... 270
Referencias bibliográficas......................................................................................... 273
Índice por palabras...................................................................................................... 283
Sobre los autores........................................................................................................... 289
Esta obra presenta una colección de demostraciones notables en matemáticas elementales, sobre números, geometría, desigualdades, funciones, origami, teselaciones, de una elegancia excepcional, sucintas e ingeniosas. A través de razonamientos sorprendentes o de potentes representaciones visuales, esperamos que esta selección de demostraciones invite a los lectores a disfrutar de la belleza de las matemáticas.Además, cada capítulo concluye con desafíos al lector se plantean alrededor de ciento treinta, a quien animamos a que busque por sí mismo demostraciones con encanto y a compartir sus descubrimientos con otros.